Supporting Information

Mechanistic Studies of [AlCp*]₄ Combustion

Xin Tang¹⁺, Jeffery B. DeLisio²⁺, Sufian Alnemrat³⁺, Zachary Hicks¹, Lauren Stevens², Chad A. Stoltz⁴,

Joseph P. Hooper^{3*}, Bryan W. Eichhorn^{2*}, Michael R. Zachariah^{2*} Kit H. Bowen^{1*}, and Dennis H. Mayo^{2,4*}

¹ Department of Chemistry, Johns Hopkins University, Baltimore MD 21218 United States

² Department of Chemistry and Biochemistry, University of Maryland–College Park, College Park Maryland 20742 United States

³ Department of Physics, Naval Postgraduate School, Monterey California 93943 United States

⁴ Research Department, Naval Surface Warfare Center Indian Head EOD Tech Division, Indian Head Maryland 20640 United States

Figure S1. Schematic of the Home-built Vacuum Suitcase for the TPR experiments. The suitcase is pumped via the port connected to the gate valve using a turbomolecular pump and the area between the three Ultra-torr fittings is pumped by a scroll pump. Once the suitcase is evacuated, both the gate valve and the shut off valve are closed and the suitcase is transferred into a glove box. Inside the glove box, the $[AlCp*]_4$ sample is loaded onto the sample plate located at the sample holder. A fresh cut sodium is put into the suitcase as oxygen/water getter. With both valves shut, the suitcase is removed from the glove box and connected to the load-lock chamber of the analytic instrument. After the load-lock chamber is pumped down via a turbomolecular pump, the turbomolecular pump is shut down and the gate valve is slowly opened to let the suitcase to be evacuated. With the area between the three Ultra-torr fitting also being pumped down, the sample can be freely moved into the load-lock chamber, where a transfer arm can fetch the sample and transfer it into the analytic chamber.

Figure S2. Picture of Home-built Vacuum Suitcase used for T-jump experiments. The airsensitive sample is coated on the wire in the glove box and sealed with an Al foil membrane. The suitcase is then transferred to the T-jump chamber, the chamber purged with N_2 and then the foil is punctured with the collar prior to T-jump analysis.

Figure S3. TOF-MS spectra of A) KCp* and B) [AlCp*]₄. Insets show spectra for m/z = 26-40, highlighting differences in m/z = 27 (i.e. Alions).

Figure S4. MS of $[AlCp^*]_4$ oxidized in pure oxygen, air, and oxygen with a partial pressure of D₂O from 520 to 860 °C in the m/z = 205-215 range.

Table 3

Nanothermite (Al + oxidizer)	Ignition temperature (K) (±50 K)	O ₂ release temperature in thermite (K) (±50 K)	O ₂ release from bare oxidizer (K) (±50 K)
AglO ₃	890	880	890
KClO ₄	905	905	875
CuO	1040	1050	975
Fe ₂ O ₃	1410	1400	1340
Co3O4	1370	1020	1030
Bi ₂ O ₃	850	930	1620
Sb ₂ O ₃	950	-	-
MoO ₃	850	-	-
WO ₃	1030	-	-
SnO ₂	1050	MS shutdown	1680

Ignition temperature of various n-Al based nanothermites listed in terms of the oxidizer. The oxygen release temperature from the nanothermite reactions and the bare oxidizer as detected by TOFMS is also tabulated. Heating rate \sim 5 × 10⁵ K/s.

Figure S5. Table 3 from ref. 22 showing the O₂ release temperatures of oxidizers. Bi₂O₃ is 1620 K.